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Abstract. We address the question of whether an anisotropic gap of dx2−y2 symmetry is
compatible with localized states in the normal phase. The issue is important for high-Tc
superconductors for which a superconductor-to-insulator transition is observed, together with
a number of experiments that support d-wave pairing. We prove that d-wave superconductivity
is compatible with a localized normal state. When the coherence length is of the order of the
lattice constant, the effects of localization are important. We find a re-entrant behaviour of
superconductivity in the strongly disordered phase.

There is a growing body of experimental evidence for high-Tc superconductors that indicates
that the pairing state is of dx2−y2 symmetry [1]. For superconductors with an anisotropic
order parameter, both magnetic and non-magnetic impurities are pair breaking. For d-wave
symmetry, the effect of non-magnetic impurities is equivalent to that of magnetic impurities
in s-wave superconductors [2]. Perturbation theory for the impurity scattering introduces a
mean free path̀ for the extended states, and the standard treatment indicates that anisotropic
superconductivity is destroyed whenξ0/` = 1/π [3], with ξ0 the coherence length. On the
other hand, the charge dynamics for oxide superconductors is basically two dimensional, and
it is known from the scaling theory of localization that in two dimensions all one-particle
states are localized [4]. This conclusion is unchanged by the presence of electron–electron
interaction [4, 5]. In fact, the experimental evidence from resistivity measurements for low
levels of doping is consistent with a divergent resistivity asT → 0 that is cut off by the
superconducting transition atT = Tc [6]. The resistivity shows an upturn at a characteristic
temperatureTmin that is apparent whenTc < Tmin. Qualitatively,Tmin corresponds to the
temperature scale for which the inelastic scattering length is comparable to the localization
length. Conversely, if theelasticmean free path is much bigger than the coherence length,
the localization effects are not important, and the variation ofTc with disorder will be
given by the usual pair-breaking expressions. For the regime withTc < Tmin, it is clear
that superconductivity becomes established at a temperature low enough for the effects of
localization to dominate the normal-state transport properties.

The purpose of the present work is to present a treatment of anisotropic
superconductivity that incorporates the fact that the states from which the superconducting
state is built up are localized, and reconcile two seemingly conflicting properties: the
observed insulator–superconductor transition, and anisotropic pairing. We show that, if
ξ0/a � 1, with a being the lattice constant, superconductivity is destroyed for small values
of the disorder, and the localization effects are not important. In this case the critical
value of the disorder is such thatξ0 = `/π � λ, with λ the localization length. Ifξ0/a
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is of order unity—as is the case for the oxide superconductors—when disorder increases,
localization effects play a role before superconductivity is destroyed by conventional pair-
breaking scattering. In this case, the dependence of the critical temperature on the disorder
deviates from the celebrated Abrikosov–Gor’kov–Maki (AGM) theory [3]. We discuss the
cases of p-wave and d-wave superconductivity.

For concreteness we consider fermions on a lattice described by the following Hamil-
tonian:

H = H0− U
∑
x

1̂†x1̂x (1)

with H0 being a one-electron Hamiltonian that includes disorder, with eigenstatesϕν(x) and
eigenvaluesεν . The second term in (1) corresponds to an instantaneous attractive interaction
with an implicit cut-off at a characteristic energyωD. In order to model dx2−y2 symmetry,

we choose1̂†x to be of the form

1̂†x =
1√
2

∑
δ

εδ(c
†
x↑c
†
x+δ↓ − c†x↓c†x+δ↑) (2)

with δ = ±e1,±e2 being the lattice vectors, andε±e1 = −ε±e2 = 1. We argue below that
the effects of localization on the critical temperatureTc for d-wave pairing are qualitatively
the same as those for p-wave pairing, an example of which is the triplet pairing [7], that
we model with

1̂†xσ =
∑
δ

ε′δc
†
xσ c
†
x+δσ

whereε+e1 = −ε−e1 = 1 andε+e2 = ε−e2 = 0.
The critical temperature is determined by the self-consistent solution of the following

linearized gap equation [8]:

1x =
∑
x ′
K(x, x ′)1x ′ (3)

where1x = 〈1̂x〉, and the kernelK, written in terms of the exact eigenstates ofH0, is
given by

K(x, x ′) = U T
2

∑
ωn

∑
µνδδ′

εδεδ′
ϕ∗µ(x)ϕ

∗
ν (x + δ)ϕν(x ′)ϕµ(x ′ + δ)
(εν − iωn)(εµ + iωn)

(4)

with T the temperature andωn = (2n + 1)πT the Matsubara frequencies. Also, we have
takenh̄ = kB = 1. From now on we will take the eigenstates as real.

We next assume that the gap is uniform,1x = |1|, which is justified forωD � 1W ,
with 1W the typical level spacing between states within a localization length of each other.
In that case we can integrate (4) overx andx ′ and reach the condition

1= T

2
NFU

∫
dξ dξ ′

∑
ωn

g(ξ − ξ ′)
(ξ ′ + iωn)(ξ − iωn)

(5)

with NF the density of states at the Fermi level, andg(ω) is the power spectrum of the
operator

D̂ =
∑
x,δ

εδ(|x + δ〉〈x| + |x〉〈x + δ|)

given by

g(ω) =
∑
ν

|〈µ|D̂|ν〉|2δ(εν − εF − ω) (6)
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where the line over the square of the matrix element indicates an average over statesµ such
that εµ = εF . For s-wave symmetry,̂D corresponds to the density operator

D̂ =
∑
x

|x〉〈x|

and g(ω) = δ(ω), since the density response is not sensitive to scattering (in theq = 0
limit, which is the case in which we are interested). This is valid even when the states
ϕν(x) are localized. With this frequency dependence ofg(ω), one obtains an equation for
the critical temperature identical to that of the pure system. This is the extension of the
Anderson theorem to the case of localized states, which was discussed by Ma and Lee using
a variational approach [9]. We conclude that under the above assumptions (ωD � 1W and
a uniform gap), the effects of localization on the critical temperature are contained, through
equation (5), in the frequency dependence of the spectral function of the operator that has the
symmetry of the order parameter. The functiong(ω) can be calculated diagrammatically,
since it is given by a two-particle bubble with bare vertices

γ dk = coskx − cosky

for d-wave symmetry, and

γ
p

k = i sinkx

for p-wave symmetry. From now on we ignore the lattice effects, and take

γ dk = cos 2θk (7)

γ
p

k = cosθk (8)

which corresponds to a gap function

1(k) = 1(T )γ ik (i = p, d).

We first write equation (6) as

gi(ω) = 1

2π2
Re
∑
k,k′

γ ik8k,k′(ω)γ
i
k′ (i = p, d) (9)

with

8k,k′ = 〈GR(k,k′; εF )GA(k′,k, ε+Fω)〉 (10)

where now〈· · ·〉 denotes impurity averaging, andGR andGA indicate the retarded and
advanced one-particle Green functions. We follow the work of Vollhardt and Wölfle (VW)
[10], and computeg(ω) within the self-consistent theory of localization. We prove that
the frequency dependence of (9) is essentially the same as that of the conductivity. The
quantity8k,k′ obeys the Bethe–Salpeter equation

8k,k′(ω) = GR
kG

A
k δk,k′ +GR

kG
A
k

∑
k′′
Uk,k′′(ω)8k′′k′(ω) (11)

with Uk,k′′(ω) the irreducible vertex function. In Anderson localization,single-particle
quantities (e.g. the density of states) are smoothly varying functions of the disorder. It is
then reasonable to approximate the self-energy6 by the lowest-order result in the impurity
scatteringU0, and use the Green’s functions in the form

GR
k(ε) =

1

ε − εk + i/2τ
(12)
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with 1/τ = 2πNFU0, and GR = (GA)∗. We have assumed aδ-correlated disordered
potentialu(x), such that

〈u(0)u(x)〉 = u2
0nimpδ(x) = U0δ(x).

Using this expression for the Green’s functions, we can write the Bethe–Salpeter equation
as a kinetic equation in the form(

ω − i

τ

)
8k,k′ = −1Gk

[
δk,k′ +

∑
k′′
Uk,k′′8k′′k′

]
(13)

with 1Gk ≡ GR
k −GA

k . If we replace in (13) the irreducible vertex by the bare vertexU0,
we obtain

gi(ω) = 1

2

1

π

τ

1+ (ωτ)2 (14)

where the prefactor 1/2 comes from the angular average of the squared vertices which is
the same for the p- and d-wave cases (this prefactor would be one for s waves).

For the p-wave case, the functiongi(ω) has the same structure of the conductivity, and
the above equation corresponds to the Drude formula. For the d-wave case,gd(ω) was
obtained earlier in a treatment of the Raman response in thel = 2 channel in the presence
of impurities [11]. However, since the Raman responseR(ω) is given by a correlation
function, there is an additional factor ofω andR(ω) = ωgd(ω). Inserting (14) in (5), we
obtain the well known expression for the critical temperature variation [12]:

− ln(Tc/Tc0) = ψ(1/2+ 1/4πτTc)− ψ(1/2).
To account for the effects of localization, the Bethe–Salpeter equation has to be solved

to higher order. Since in this regime there are some differences between the p-wave (l = 1
channel) and d-wave (l = 2 channel) cases, we discuss them separately.

(i) The p-wave case (l= 1). The low-frequencyl = 1 kernel is the same (except for a
prefactor) as the current relaxation kernel. The result forgp(ω) is identical to the expression
obtained by VW, and is given by

gp(ω) = 1

4π

τ

1+ (ω̃τ )2 (15)

with ω̃ = ω + ω2
0/ω. The characteristic frequencyω0 is finite in the localized phase, and

is given by

ω0 = vF /(
√

2λ)

with λ the localization length.
From this consideration, one can compute an expression for the relative change of the

critical temperature with disorder, which extends the AGM theory for the case of localized
anisotropic superconductors. Our result is then

ln

(
Tc0

Tc

)
= − ln

(
Tc0

ωD

)
2τ

τ−
+ τ

τ+

[
ψ

(
1

2
+ ρ+

)
− ψ

(
1

2

)]
− τ

τ−

[
ψ

(
1

2
+ ρ−

)
− ψ

(
1

2

)]
(16)

where

1/τ± =
√
ω2

0 + (1/2τ)2± 1/2τ ρ± = 1/4πτ±Tc.
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Figure 1. The relative critical temperatureTc/Tc0 for the p-wave case versusξ0/` for kF ξ0 = 10
(short-dashed line), 1.0 (dashed line), 0.75 (solid line), andωD/Tc0 = 0.1. The Abrikosov–
Gor’kov–Maki curve is indistinguishable from the one corresponding tokF ξ0 = 10.

The above expression gives the change in critical temperature as a function ofτ and
ω0. In contrast with the case for the AGM formula, in our case the relative change inTc is
dependent of the cut-off frequencyωD. The self-consistent theory of localization provides
a relation between the two relevant parametersω0 andτ introduced by potential scattering:

ω0τ = `/
√

2λ
λ

`
= (eπkF `/2− 1)1/2.

Consequently, the relative change in the critical temperature is given by the three
independent dimensionless parametersωD/Tc0, kF ξ0, and kF ` (see figure 1). The effects
of localization are important whenkf ξ0 is of order one. In this regime the results deviate
from the AGM theory; in particularTc/Tc0 shows a re-entrant behaviour.

We now discuss briefly the mechanism underlying the re-entrant behaviour inTc.
The re-entrance to a normal state as temperature decreases can occur if the entropy of
the superconducting phase is higher than the entropy of the normal state at very low
temperatures. This can happen if the localization length is of the order of the mean free
path. In this regime one can estimate, for the p-wave case, the density of statesρ(E) of
the quasiparticles by computing the quasiparticle energiesEν as a correction of theparticle
energiesεν in second order in the pairing interaction [8]:

ρ(E) = N0

/∣∣∣∣∂E∂ε
∣∣∣∣ = N0

/(
1+12 ∂

∂ε

∫
dω

g(ω)

2ε + ω
∣∣∣∣
ε=E

)
. (17)

The result is then that the density of states at the Fermi energy can be bigger than the normal-
state density of states, and the superconducting entropy is higher at low temperatures. The
behaviour ofρ(E) is non-monotonic inE and one gets two transitions as the temperature
increases. Although the range in values of the disorder for which this re-entrant behaviour
is visible is small, one expects the quasiparticle density of states to have a structure with a
maximum at the chemical potential for a wider range of disorder.

(ii) The d-wave case (l= 2). The correlation functionsgi(ω) for the p and d channels
have a similar structure. However, since the d-wave operator does not correspond to a
conserved current, there is in this case an additional singular contribution that gives rise to a
term∝ δ(ω). We see from equation (6) that the diagonal terms〈ν|D̂|ν〉, which are identically
zero for l = 1, are non-zero when̂D has d-wave symmetry. Physically, the weight of the
delta function corresponds to the fraction of Cooper pairs formed with electrons occupying
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the same localized state. A precise computation of this weight requires knowledge of the
structure of the localized wave functions, and we estimate it in the following form. The
singular contribution is of the formSdδ(ω), with Sd the d-wave component of the wave
function:

Sd ∼
∫
r dr dθ 92 cos 2θ. (18)

If we approximate92 as a Gaussian random variable located at each site, and distributed
over the localization lengthλ, Sd is of the order of the fluctuation of the sum over the
random variables. The number of sites over which the function is non-zero is∼λ2/a2, with
a the lattice constant, and we obtainSd ∼ 1/λ2. This is only an estimate, and in general
we will show that the correlation function of equation (6) will be given by

gd(ω) = (1− Sd) 1

2π

τd

1+ (ω̃τd)2 +
Sd

2
δ(ω) (19)

where the prefactor(1− Sd) guarantees that thegd(ω) satisfies the sum rule∫ ∞
0

dω gd(ω) = 1

2
(20)

which can be proven immediately by integrating equation (6).
For the computation of the finite-frequency contribution ofgd(ω) we start from

equation (13). Following VW, we observe that since1Gk is strongly peaked at the Fermi
momentumk = kF , the dependence of8k,k′ on the magnitude of the wave vectors will be
dominated by1Gk. We define

8k =
∑
k′
8k,k′ cos 2θk′

and extract the angular dependence onk using a Legendre expansion in which we keep
terms up to thel = 2 one:

8k = 1Gk

−2π iNF

∑
k′

[1+ 2 cosθk cosθk′ + 2 cos 2θk cos 2θk′ ]8k′ . (21)

Multiplying (13) by cos 2θk cos 2θk′ , summing overk,k′, and using (21), we obtain∑
k,k′

cos 2θk8k,k′ cos 2θk′ = −iπNF
ω −M(ω) (22)

whereM(ω) is a ‘l = 2 relaxation kernel’, given by

M(ω) = i

τ
+ i

πNF

∑
k,k′

cos 2θk1Gk Uk,k′ 1Gk′ cos 2θk′ . (23)

The structure ofM(ω) is very similar to that of the current relaxation kernel. Note that
in deriving this expression we have neglected terms that mix different angular dependences
in M(ω), and that give rise to factors cosmθk cos 2θk′ , with m = 0, 1, 2. These terms
do not appear in the treatment of VW. Neglecting these terms is justified, since we are
anticipating the inclusion of the contribution to the irreducible vertex that is the origin of
the divergence ofM(ω). The infrared divergence ofM comes from the maximally crossed
(MC) diagrams [13], which are irreducible, and contribute with

UMC
k,k′ =

iU0/τ

ω + iD0(k + k′)2 (24)
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for k ' − k′, and with D0 the bare diffusion constant. Due to this divergence we
can takek = k′ for the angular integral and the ‘off-diagonal’ contributions vanish
due to orthogonality. Using the aboveUMC

k,k′ in (23), we obtain the logarithmic low-
frequency divergenceM(ω) ∼ logω that is familiar from the perturbation theory of the
conductivity [14].

The low-frequency kernel is the same (except for a prefactor) as the current relaxation
kernel, and it will still be related to the diffusion constant

D(ω) = iD0[M(ω)τ ]−1.

This allows us to go beyond perturbation theory and determineM(ω) self-consistently
through the equation

M(ω) = i

τ
− 2

τ

∑
k

1

ω − k2D0[M(ω)τ ]−1
. (25)

Equation (25) can be solved for low frequencies, giving

M(ω) = i

τ
− ω

2
0

ω
(26)

and

gd(ω > 0) = NF

2π

τ

1+ (ω̃τ )2 (27)

which implies the following equation for the critical temperature:

ln

(
Tc0

Tc

)
= D−1

{
− ln

(
Tc0

ωD

)
2τ

τ−
+ τ

τ+

[
ψ

(
1

2
+ ρ+

)
− ψ

(
1

2

)]
− τ

τ−

[
ψ

(
1

2
+ ρ−

)
− ψ

(
1

2

)]}
(28)

with

D = 1+ Sdτ

1− Sd
√
ω2

0 + (1/2τ)2. (29)
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Figure 2. The relative critical temperatureTc/Tc0 for the d-wave case versusξ0/` for kF ξ0 = 10
(short-dashed line), 1.0 (dashed line), 0.75 (solid line), andωD/Tc0 = 0.1. The plots correspond
to Sd = 0.2.

Irrespectively of the value ofkF ξ0, if kF `� 1 (small disorder), the states are essentially
extended, and the relative change inTc is given by the AGM theory. The effects of
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localization can be apparent whenkF ξ0 is of order one, as is the case for the oxide
superconductors. Forξ0/l > 1/π the critical temperature is no longer zero as in the
case of the AGM theory, but has an exponentially small value (see figure 2). In this
regime, the superconducting condensate wave function is constructed from localized one-
particle states for which the localization length is only one order of magnitude larger than
the coherence length. For large enough disorder, our approximation breaks down, since
the order parameter is no longer uniform, and the critical temperature should go to zero.
The possibility of constructing a superconducting condensate from one-particle sates with
relatively small localization lengths has been analysed in the case of s-wave superconductors
[9], for which the Anderson theorem holds. Our results show that, in the case of p- or d-
wave symmetries, where the potential scattering is pair breaking, superconductivity and
localization can also coexist.

To conclude we comment on the following points.

(i) If disorder is too strong, the hypothesis made above of a uniform gap does not hold.
For all of the curves of figure 1, the inequalityNFλ210 > 1 is satisfied, which guarantees
that spatial fluctuations in the gap are negligible [9].

(ii) An important effect onTc in s-wave superconductors is due to the enhancement of
the effective screened Coulomb repulsion due to disorder [15]. For d-wave symmetry the
short-range Coulomb repulsion does not affect the effective pairing, and consequently the
effects of the Coulomb interaction are not as important. In particular, our results are not
changed at all by a local Coulomb repulsion, which corresponds to Hubbard-type models
used to describe the copper oxide planes.

(iii) As regards experiments on high-Tc oxides, the superconducting–insulating transition
has been induced by various mechanisms: irradiation [16], ion substitution [17], or doping
[6]. In comparing our results with experiments, one should be able to isolate the effects of
hole doping and the effects of disorder.

In summary, we have shown that p- and d-wave superconductivity are compatible with
Anderson localization of the one-particle states. Our theory distinguishes between the two
symmetries in the localized regime, and gives essentially identical results in the extended
phase. In addition, out treatment extends previous calculations of the Raman response in
disordered systems to the localized phase.

Acknowledgments

This work was supported by the National Science Foundation under grant INT-9602962, and
by the CONICET, Argentina. We thank Eduardo Fradkin, J Rasul, P A Lee, D Vollhardt,
and C M Varma for discussions.

References

[1] Wollman D A, Van Harlingen D J, Lee W C, Ginsberg D M and Leggett A J 1993Phys. Rev. Lett.71 2134
Tsuei C C, Kirtley J R, Chi C C, Yu-Jahnes L S, Gupta A, Shaw T, Sun J Z and Ketchen M B 1994Phys.

Rev. Lett.73 593
[2] Markowitz D and Kadanoff L P 1993Phys. Rev.131 563

Tsuneto T 1962Prog. Theor. Phys.28 857
[3] Abrikosov A A and Gor’kov L P 1960Zh. Eksp. Teor. Fiz.39 1781 (Engl. Transl. 1961Sov. Phys.–JETP12

1243)
Maki K 1969 Superconductivityvol 2, ed R D Parks (New York: Dekker)

[4] Lee P A and Ramakrishnan T V 1985Rev. Mod. Phys.57 287



Localized anisotropic superconductors 7595

[5] Belitz D and Kirkpatrick T R 1994Rev. Mod. Phys.66 261
[6] Takagi H, Batlogg B, Kao H L, Kwo J, Cava R J, Krajewski J J and Peck W F Jr1992Phys. Rev. Lett.69

2975
[7] Leggett A J 1975Rev. Mod. Phys.47 331
[8] de Gennes P G 1966Superconductivity of Metals and Alloys(New York: Benjamin)
[9] Ma M and Lee P A 1985Phys. Rev.B 32 5658
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